Showing posts with label Research. Show all posts
Showing posts with label Research. Show all posts

Thursday, 27 June 2013

Current Research in the Behavioral Sciences: Preferences for Brands That Contain the Letters of Our Own Name



Current Research in the Behavioral Sciences: Preferences for  Brands That Contain the Letters of Our Own Name

A recent study reported in the Journal of Consumer Research (Brendl, Chattopadhyay, Pelham, & Carvallo, 2005) is an example of the kind of research that behavioral scientists conduct, and which demonstrates that people are frequently unaware of the causes of their own behavior. Their research demonstrated that, at least under certain conditions (and although they do not know it), people frequently prefer brand names that contain the letters of their own name to brand names that do not contain the letters of their own name.
         The research participants were recruited in pairs, and were told that the research was about a taste test of tea. The experimenter created for each pair of participants two teas by adding the word stem “oki” to the fi rst three letters of each participant’s fi rst name. For example, for Jonathan and Elisabeth these would have been Jonoki and Elioki. (Fortunately, the researchers did not encounter anyone named Kari!) 
        The participants were then shown 20 packets of tea that were supposedly being tested. Each packet was labeled with a made-up Japanese name (for instance “Mataku” or “Somuta”), with two of them being the brand names just constructed. The experimenter explained that each participant would taste only two teas and would be allowed to choose one packet of these two to take home. One of the two participants was asked to draw slips of paper to select the two brands that would be tasted at this session. However, the drawing was rigged so that the two brands containing the participants’ initials were always chosen for tasting. Then, while the teas were being brewed, the participants completed a task designed to heighten their needs for self esteem, and which was expected to increase the desire to choose a brand that had one’s own initials. Specifically, the participants all wrote about an aspect of themselves that they would like to change. 
         After the teas were ready, the participants tasted them. The two teas were actually identical, except that a drop of lemon juice had randomly been added to one of them so that they did not taste exactly the same. After tasting, the participants chose to take a packet of one of the teas home with them. After they made their choice, the participants were asked why they chose the tea they had chosen, and then the true purpose of the study was explained to them. 
          The results of this study found that participants chose the tea that included the fi rst three letters of their own name 64 percent of the time, whereas they chose the brand that included the first three letters of their partner’s name only 36 percent of the time. Furthermore, the participants did not know why they chose the tea they chose. Over 90 percent of the students thought that they had chosen on the basis of taste, whereas only 5 percent of the respondents mentioned something about the brand names. 
       Can you determine what type of research design was used by the researchers? Does the fact that the participants were unable to explain why they chose the tea that they chose surprise you? The author’s analysis of the study is available at the companion website to this book.

Research Designs: Three Approaches to Studying Behavior

Research Designs: Three Approaches to Studying Behavior


Behavioral scientists agree that their ideas and their theories about human behavior must be backed up by data to be taken seriously. However, although all scientists follow the basic underlying procedures of scientifi c investigation, the research of different scientists is designed with different goals in mind, and the different goals require different approaches to answering the researcher’s questions. These different approaches are known as research designs. A research design is the specifi c method a researcher uses to collect, analyze, and interpret data. Although there are many variants of each, there are only three basic research designs used in behavioral research. These are descriptive research designs, correlational research designs, and experimental research designs. Because these three research designs will form the basis of this entire book, we will consider them in some detail at this point. As we will see, each of the approaches has both strengths and limitations, and therefore all three can contribute to the accumulation of scientifi c knowledge. To fully understand how the research designs work, you need to be aware of the statistical tests that are used to analyze the data. If you are not familiar with statistical procedures (or if you feel that you need a bit of a brushup), you should read Appendix B and Appendix C before you continue.

Descriptive Research: Assessing the Current State of Affairs

      The first goal of behavioral research is to describe the thoughts, feelings, and behavior of individuals. Research designed to answer questions about the current state of affairs is known as descriptive research. This type of research provides a “snapshot” of thoughts, feelings, or behaviors at a given place and a given time. 
Surveys and Interviews. One type of descriptive research, which we will discuss in Chapter 6, is based on surveys. Millions of dollars are spent yearly by the U.S. Bureau of the Census to describe the characteristics of the U.S. population, including where people work, how much they earn, and with whom they live. Descriptive data in the form of surveys and interviews are regularly found in articles published in newspapers and magazines and are used by politicians to determine what policies are popular or unpopular with their constituents.
          Sometimes the data from descriptive research projects are rather mundane, such as “Nine out of ten doctors prefer Tymenocin,” or “The average income in Montgomery County is $36,712.” Yet, other times (particularly in discussions of social behavior), descriptive statistics can be shocking: “Over 40,000 people are killed by gunfi re in the United States every year,” or “Over 45 percent of sixth graders at Madison High School report that they have used marijuana.”
         One common type of descriptive research, frequently reported in newspaper and magazine articles, involves surveys of the “current concerns” of the people within a city, state, or nation. The results of such a survey are shown in Figure 1.1. These surveys allow us to get a picture of what people are thinking, feeling, or doing at a given point in time. 
           Naturalistic Observation. As we will discuss more fully in Chapter 7, another type of descriptive research—known as naturalistic observation—is based on the observation of everyday events. For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biological psychologist who observes animals in their natural habitats or a sociologist who studies the way in which people use public transportation in a large urban city.



















Qualitative Versus Quantitative Research. One distinction that is made in descriptive research concerns whether it is qualitative or quantitative in orientation. Qualitative research is descriptive research that is focused on observing and describing events as they occur, with the goal of capturing all of the richness of everyday behavior and with the hope of discovering and understanding phenomena that might have been missed if only more cursory examinations had been used (Denzin & Lincoln, 2003). The data that form the basis of qualitative research are in their original rich form—for instance, descriptive narratives such as fi eld notes and audio or video recordings. Quantitative research is descriptive research that uses more formal measures of behavior, including questionnaires and systematic observation of behavior, which are designed to be subjected to statistical analysis. The strength of qualitative research is that it vividly describes ongoing behavior in its original form. However, because it does not use statistical analysis, it is generally more subjective and may not fully separate the values of the researcher from the objectivity of the research process. In many cases, however, qualitative data are reported along with quantitative data to provide a fuller description of the observed behavior; this combination of approaches can be very informative.


Strengths and Limitations of Descriptive Research. One advantage of descriptive research is that it attempts to capture the complexity of everyday behavior. For instance, surveys capture the thoughts of a large population of people, and naturalistic observation is designed to study the behavior of  people or animals as it occurs naturally. Thus, descriptive research is used to provide a relatively complete understanding of what is currently happening. Nevertheless, descriptive research has a distinct disadvantage in that although it allows us to get an idea of what is currently happening, it is limited to providing static pictures. A study of the current concerns of individuals, for instance, cannot tell us how those concerns developed or what impact they have on people’s voting behavior.

Correlational Research: Seeking Relationships Among Variables 

       In contrast to descriptive research, which is designed to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. A variable is any attribute that can assume different values among different people or across different times or places. Sometimes variables are rather simple—for instance, measures of age, shoe size, or weight. In other cases (and as we will discuss fully in Chapters 4 and 5), variables represent more complex ideas, such as egomania, burnout, sexism, or cognitive development. 
     As we will see in Chapter 9, the goal of correlational research is to uncover variables that show systematic relationships with each other. For instance, the variables of height and weight are systematically related, because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors she or he will make. Of course, a person’s score on one variable is not usually perfectly related to his or her score on the other. Although tall people are likely to weigh more, we cannot perfectly predict how tall someone is merely by knowing that person’s weight. 
        The Pearson Product–Moment Correlation Coeffi cient. Because the size of the relationships of interest to behavioral scientists is usually very small, statistical procedures are used to detect them. The most common measure of relationships among variables is the Pearson product–moment correlation coeffi cient, which is symbolized by the letter r
      The correlation coeffi cient ranges from r 5 21.00 to r 5 11.00. Positive values indicate positive correlations, in which people who are farther above average on one variable (for instance, height) generally are also farther above average on the other variable (for instance, weight). Negative values of r indicate negative correlations, in which people who are farther above average on one variable (for instance, study time) generally are also farther below average on the other variable (memory errors). Values of the correlation coeffi cient that are farther from zero (either positive or negative) indicate stronger relationships, whereas values closer to zero indicate weaker relationships.

The Use of Correlations to Make Predictions. One type of correlational research involves predicting future events from currently available knowledge. In this case, one or more variables of interest are measured at one time, and other variables are measured at a later time. To the extent that there is a correlation between what we know now and what will occur later, we can use knowledge about the things that we already know to predict what will happen later. For instance, Nettles, Thoeny, and Gosman (1986) used a correlational research design to predict whether college students would stay in school or drop out. They measured characteristics of 4,094 college students at thirty different colleges and universities and assessed the ability of these characteristics to predict the students’ current college grade-point average (GPA). In addition to intellectual variables such as high school GPA and Scholastic Aptitude Test (SAT) scores, they also assessed social variables including socioeconomic status, the students’ reports of interfering social problems such as emotional stress and fi nancial diffi culties, and the students’ perceptions of the quality of faculty– student relations at their university. The last measure was based on responses to questions such as “It is easy to develop close relationships with faculty members,” and “I am satisfi ed with the student–faculty relations at this university.” 
       As shown in Table 1.2, the researchers found that students’ ratings of the social problems they experienced on campus were as highly predictive of their grade-point average as were the standardized test scores they had taken before entering college. This information allows educators to predict which students will be most likely to fi nish their college education and suggests that campus experiences are important in this regard. 
Strengths and Limitations of Correlational Research. One particular advantage of correlational research is that it can be used to assess behavior as it occurs in people’s everyday lives. Imagine, for instance, a researcher who finds a negative correlation between the row in which his students normally sit in his class and their grade on the fi nal exam. This researcher’s data demonstrate a very interesting relationship that occurs naturally for students attending college—those who sit nearer the front of the class get better grades. 
        Despite the ability of correlational studies to investigate naturally occurring behavior, they also have some inherent limitations. Most important, correlational studies cannot be used to identify causal relationships among the variables. It is just as possible that getting good grades causes students to sit in the front of the class as it is that sitting in the front of the class causes good grades. Furthermore, because only some of all the possible relevant variables are measured in correlational research, it is always possible that neither of the
variables caused the other and that some other variable caused the observed variables to be correlated. For instance, students who are excited by the subject matter or who are highly motivated to succeed in school might both choose to sit in the front of the class and also end up getting good grades. In this case, seating row and grades will be correlated, even though neither one caused the other.
          In short, correlational research is limited to demonstrating relationships between or among variables or to making predictions of future events, but it cannot tell us why those variables are related. For instance, we could use a correlational design to predict the success of a group of trainees on a job from their scores on a battery of tests that they take during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments .

Experimental Research: Understanding the Causes of Behavior

Behavioral scientists are particularly interested in answering questions about the causal relationships among variables. They believe that it is possible, indeed necessary, to determine which variables cause other variables to occur. Consider these questions: “Does watching violent television cause aggressive behavior?”, “Does sleep deprivation cause an increase in memory errors?”, and “Does being in a stressful situation cause heart disease?” Because it is diffi cult to answer such questions about causality using correlational designs, scientists frequently use experimental research. As we will discuss more fully in Chapters 10 and 11, experimental research involves the active creation or manipulation of a given situation or experience for two or more groups of individuals, followed by a measurement of the effect of those experiences on thoughts, feelings, or behavior. Furthermore, experimental research is designed to create equivalence between the individuals in the different groups before the experiment begins, so that any differences found can confi dently
be attributed to the effects of the experimental manipulation. 

Elements of Experiments. Let us look, for instance, at an experimental research design used by social psychologists Macrae, Bodenhausen, Milne, and Jetten (1994). The goal of this experiment was to test the hypothesis that suppressing the use of stereotypes may cause an unexpected “rebound” in which those stereotypes are actually used to a greater extent at a later time. In the experiment, college students were shown a picture of a “skinhead” and asked to write a short paragraph describing what they thought he was like. While doing so, half of the students were explicitly told not to let their stereotypes about skinheads infl uence them when writing their descriptions. The other half of the students were just asked to write a description. After the students had fi nished writing their descriptions, they were told that they were going to be meeting with the person they had written about and were taken into a separate room. In the room was a row of nine chairs, with a jean jacket and a book bag sitting on the center one. The experimenter explained that the partner (the skinhead) had evidently left to go to the bathroom but that he would be right back and the students should take a seat and wait. As soon as the students sat down, the experiment was over. The prediction that students who had previously suppressed their stereotypes would sit, on average, farther away from the skinhead’s chair than the students who had not suppressed their stereotypes was confi rmed. 

Strengths and Limitations of Experimental Research. This clever experiment nicely demonstrates one advantage of experimental research. The experiment can be interpreted as demonstrating that suppressing stereotypes caused the students to sit farther away from the skinhead because there was only one difference between the two groups of students in this experiment, and that was whether they had suppressed their stereotypical thoughts when writing. It is this ability to draw conclusions about causal relationships that makes experiments so popular. 
          Although they have the distinct advantage of being able to provide information about causal relationships among variables, experiments, like descriptive and correlational research, also have limitations. In fact, experiments cannot be used to study the most important social questions facing today’s society, including violence, racism, poverty, and homelessness, because the conditions of interest cannot be manipulated by the experimenter. Because it is not possible (for both practical and ethical reasons) to manipulate whether a person is homeless, poor, or abused by her or his parents, these topics cannot be studied experimentally. Thus, descriptive and correlational designs must be used to study these issues. Because experiments have their own limitations, they are no more “scientifi c” than are other approaches to research.

The Selection of an Appropriate Method

The previous sections have described the characteristics of descriptive, correlational, and experimental research designs. Because these three approaches represent fundamentally different ways of studying behavior, they each provide different types of information. As summarized in Table 1.3, each research design has a unique set of advantages and disadvantages. In short, each of the three research designs contributes to the accumulation of scientific knowledge, and thus, each is necessary for a complete study of behavior.

         To determine what research approach is best for a given research project, the researcher must look at several matters. For one, practical issues such as the availability of research participants, researchers, equipment, and space will determine the research approach. As we will see in Chapter 3, ethical principles of research will shape the researcher’s choice. But the decision will also derive from the researcher’s own ideas about research—what she or he thinks is important to study. It is to the development of research ideas that we will turn in the next chapter. Furthermore, because each of the three research designs has different strengths and weaknesses, it is often effective to use them together. For instance, the impact of population density on mental health has been tested using naturalistic observation, correlational studies, and experimental research designs. Using more than one technique (such as more than one research design) to study the same thing, with the hope that all of the approaches will produce similar fi ndings, is known as converging operations. As we will see, the converging-operation approach is common in the behavioral sciences. 

Wednesday, 26 June 2013

The Importance of Studying Research Methods

The Importance of Studying Research Methods

I hope that you are now beginning to understand why instructors find it so important for students to take research methods or research laboratory courses as part of their behavioral science degree. To fully understand the material in a behavioral science course, you must fi rst understand how and why the research you are reading about was conducted and what the collected data mean. A fundamental understanding of research methodology will help you read about and correctly interpret the results of research in any fi eld of behavioral science. 

Evaluating Research Reports
One goal of this book is to help you learn how to evaluate scientifi c research reports. We will examine how behavioral scientists develop ideas and test them, how they measure behavior, and how they analyze and interpret the data they collect. Understanding the principles and practices of behavioral research will be useful to you because it will help you determine the quality of the research that you read about. If you read that ibuprofen relieves headaches faster than aspirin, or that children learn more in private than in public schools, you should not believe it just because the fi ndings are based on “research.” As we will discuss in more detail in later chapters, research can mislead you if it is not valid. Thus, the most important skill you can gain from the study of research methods is the ability to distinguish good research from bad research. 

Conducting Research
The second goal of this book is to help you learn how to conduct research. Such skills will obviously be useful to you if you plan a career as a behavioral scientist, where conducting research will be your most important activity. But the ability to design and execute research projects is also in demand in many other careers. For instance, advertising and marketing researchers study how to make advertising more effective, health and medical researchers study the impact of behaviors (such as drug use and smoking) on illness, and computer scientists study how people interact with computers. Furthermore, even if you are not planning a career as a researcher, jobs in almost any area of social, medical, or mental health science require that a worker be informed about behavioral research. There are many opportunities for college graduates who have developed the ability to conduct research, and you can learn about them by visiting the American Psychological Association website at http://www. apa.org/students/brochure/.
          There is no question that conducting behavioral research is diffi cult. Unlike beakers full of sulfuric acid, the objects of study in the behavioral sciences— human beings and animals—differ tremendously from each other. No two people are alike, nor do they respond to attempts to study them in the same way. People are free to make their own decisions and to choose their own behaviors. They choose whether to participate in research, whether to take it seriously, and perhaps even whether to sabotage it. Furthermore, whereas the determinants of the pressure of a gas or the movement of a particle can be fairly well defi ned, the causes of human behavior are not at this time well understood. Although these diffi culties represent real challenges, they also represent the thrill of conducting behavioral research. The path is diffi cult, but the potential rewards of understanding behavior are great.

Thinking Critically About Research
       Progress in the behavioral sciences depends on people, like you, who have the skills to critically create, read, evaluate, and criticize research. As you read this book, you will acquire skills that allow you to think critically about research. Once you have learned these skills, you will be able to conduct sound research and to determine the value of research that you read about. In short, you will be able to ask the important questions, such as “How was the research conducted?” “How were the data analyzed?” and, more generally, “Are the conclusions drawn warranted by the facts?” In the remainder of  this chapter, we will turn to these questions by considering the three major research approaches to studying human behavior.

Basic and Applied Research


Basic and Applied Research

One way that the scientist’s values infl uence research is in the types of research that he or she fi nds important to study. Some scientists conduct research primarily for the intellectual satisfaction of knowing something, whereas others conduct research for the purpose of gaining practical knowledge about a particular social issue or problem. 
        Basic research answers fundamental questions about behavior. For instance, cognitive psychologists study how different types of practice infl uence memory for pictures and words, and biological psychologists study how nerves conduct impulses from the receptors in the skin to the brain. There is no particular reason to study such things except to acquire a better knowledge of how these processes occur. 
        Applied research investigates issues that have implications for everyday life and provide solutions to everyday problems. Applied research has been conducted to study such issues as what types of psychotherapy are most effective in reducing depression, what types of advertising campaigns will reduce drug and alcohol abuse, how to predict who will perform well at managerial positions, and what factors are associated with successful college performance. One type of applied research is called program evaluation research, which is conducted to study the effectiveness of methods designed to make positive social changes, such as training programs, antiprejudice programs, and after-school learning programs. We will more fully discuss how to conduct program evaluation research in Chapter 14. 
           Although research usually has either a basic or an applied orientation, in most cases the distinction between the two types is not clear-cut. Scientists who conduct basic research are frequently infl uenced by practical issues in determining which topics to study. For instance, although research concerning the role of practice on memory for lists of words is basic in orientation, the results could someday be used to help children learn to read. Correspondingly, scientists who
are interested in solving practical problems are well aware that the results of basic research can help them do so. Programs designed to reduce the spread of AIDS or to promote volunteering are frequently founded on the results of basic research concerning the factors that lead people to change their behaviors. In short, applied research and basic research inform each other (Lewin, 1944). Basic research provides underlying principles that can be used to solve specifi c problems, and applied research gives ideas for the kinds of topics that basic research can study. Advances in the behavioral sciences occur more rapidly when each type of research is represented in the enterprise. Accordingly, we will discuss both approaches in this book.

Values Versus Facts in Scientific Research

Values Versus Facts in Scientific Research


Although scientifi c research is an important method of studying human behavior, not all questions can be answered using scientifi c approaches. Statements that cannot be objectively measured or objectively determined to be true or false are not within the domain of scientifi c inquiry. Scientists, therefore, draw a distinction between values and facts. Values are personal statements such as “Abortion should not be permitted in this country,” “I will go to heaven when I die,” or “It is important to study behavioral research.” Facts are objective statements determined to be accurate through empirical study. Examples are “There were over 16,000 homicides in the United States in 2002,” or “Behavioral research demonstrates that individuals who are exposed to highly stressful situations over long periods of time are particularly likely to develop health problems such as heart disease and cancer.”

Facts and the Formation of Values. Because values cannot be considered to be either true or false, science cannot prove or disprove them. Nevertheless, as shown in Table 1.1, behavioral research can sometimes provide facts that can help people develop their values. For instance, science may be able to objectively measure the impact of unwanted children on a society or the psychological trauma suffered by women who have abortions. The effect of capital punishment on the crime rate in the United States may also be determinable. This factual information can and should be made available to help people formulate their values about abortion and capital punishment, as well as to enable governments to articulate appropriate policies. Values also frequently come into play in determining what research is appropriate or important to conduct. For instance, the U.S. government has recently supported and provided funding for research on HIV and AIDS while at the same time limiting the possibility of conducting research using human stem cells.

Distinguishing Between Facts and Values. Although scientists use research to help distinguish facts from values, the distinction between the two is not always as clear-cut as they might like. Sometimes statements that scientists consider to be factual later turn out to be partially or even entirely incorrect. This happens because there is usually more than one way to interpret data. As a result, scientists frequently disagree with each other about the meaning of observed data. One well-known example concerns the interpretation of race-related differences in IQ. Data show that, on average, African-American students score more poorly on standardized exams than do white students (Herrnstein & Murray, 1994). Some scientists argue that these data indicate inherent genetic differences in intelligence among racial groups, whereas others contend that these differences are caused by social effects, such as differences in nutrition, interests, and schooling. Still others maintain that the data demonstrate not that intelligence is unequal between races but that the tests themselves are culturally biased to favor some groups over others. In most cases such as this, the initial disagreement over the interpretation of data leads to further data collection designed to resolve the disagreements. 
          Although data must also be interpreted in the natural sciences, such as chemistry and physics, interpreting data is even more diffi cult in the behavioral sciences. Because people have their own hypotheses and beliefs about human behavior, they can easily make their own interpretations of the results of behavioral research, such as the meaning of differences on IQ tests between white and African-American students. Furthermore, the measures used by behavioral scientists, such as asking people questions and observing their behaviors, often appear less sophisticated than those used in other sciences. As a result, to many people behavioral science research does not appear to be as “scientific” as research in the natural sciences. 
           Even though behavioral research has not advanced as far as research in the natural sciences, behavioral scientists follow the same procedures as do scientists in other fi elds. These procedures involve creating a systematic set of knowledge about the characteristics of individuals and groups and the relationships among them. In this sense, behavioral science research is just as scientifi c as that in any other fi eld. Furthermore, just because data must be interpreted does not mean that behavioral research is not useful. Although scientifi c procedures do not necessarily guarantee that the answers to questions will be objective and unbiased, science is still the best method currently known for drawing objective conclusions about the world around us. When old facts are discarded, they are replaced with new facts, based on newer and more correct data. Although science is not perfect, the requirements of empiricism, objectivity, and accumulation still result in a much greater chance of producing an accurate understanding of human behavior than is available through other approaches.

Values and Facts in the Research Report. Although the goal of the scientific method is to be objective, this does not mean that values do not come into play in science. Scientists must make decisions about what to study, how to study it, whom to use as research participants, and how to interpret their data. Thus, the goal of science is not to make everything objective, but rather to make clear which parts of the research process are objective and which parts are not.
      Scientific findings are made publicly available through the publication of research reports. The research report is a document that presents scientific fi ndings using a standardized written format. Different research report formats are used in different fi elds of science, but behavioral science frequently uses the format prepared by the American Psychological Association (APA). An overview of this approach is presented on the inside cover of this book, and a complete description of APA format can be found in Appendix A. If you
are not familiar with it, you may wish to read Appendix A now. 
       One of the most important requirements of the research report is that the appropriate information goes in the appropriate section. In this regard, two of the sections—Introduction and Discussion—are relatively subjective, because they involve such questions as what topics are of importance to study and how the data should be interpreted. However, two other sections—Results and Discussion—are completely objective, describing the actual procedures of the experiments and the statistical analyses. Again, the point is that science has both objective and subjective components, and it attempts to clearly differentiate the two. One of the major things you will learn in this book is how to draw the important distinction between the values and facts (that is, between the subjective and the objective aspects) in behavioral research. 

The Scientific Method

The Scientific Method

All scientists (whether they are physicists, chemists, biologists, sociologists, or psychologists) are engaged in the basic processes of collecting and organizing data and drawing conclusions about those data. The methods used by scientists to do so have developed over many years and provide a basis for collecting, analyzing, and interpreting data within a common framework in which information can be shared. We can label the set of assumptions, rules, and procedures that scientists use to conduct research the scientific method. Indeed, the focus of this book is the use of the scientifi c method to study behavior.  
         In addition to requiring that science be empirical—based on observation or measurement of relevant information—the scientifi c method demands that the procedures used be objective, or free from the personal bias or emotions of the scientist. The scientifi c method prescribes how scientists collect and analyze data, how they draw conclusions from data, and how they share data with others. These rules increase objectivity by placing data under scrutiny by other scientists and even by the public at large. Because data are reported objectively, other scientists know exactly how the scientist collected and analyzed the data. This means that they do not have to rely only on the scientist’s own interpretation of the data; they may also draw their own, potentially different, conclusions. Of course, we frequently trust scientists to draw their own conclusions about their data (after all, they are the experts), and we rely on their interpretations. However, when conclusions are made on the basis of empirical data, a knowledgeable person can check up on these interpretations should she or he desire to do so. This book will demonstrate how. 
          The scientific method also demands that science be based on what has come before it. As we will discuss in Chapter 13, most new research is designed to replicate—that is, to repeat, add to, or modify—previous research fi ndings. The scientifi c method results in an accumulation of scientifi c knowledge, through the reporting of research and the addition to and modifi cations of these reported fi ndings through further research by other scientists.

Discovering the Limitations of Using Intuition

Discovering the Limitations of Using Intuition

In one empirical demonstration of how diffi cult it can be to understand even our own behavior, Nisbett and Wilson (1977) had college students read a passage describing a woman who was applying for a job as a counselor in a crisis intervention center. Unknown to the students, the descriptions of the interview were varied so that different students read different information about what occurred during the interview. Some students read that the woman had superb academic credentials, whereas others did not learn this information.
For some students the woman was described as having spilled a cup of coffee over the interviewer’s desk during the interview, whereas for others no such event was mentioned. After reading the information, the students fi rst judged the woman they had read about in terms of her suitability for the job on rating scales such as how much they liked her and how intelligent they thought she was. They also indicated how they thought each of the behaviors they had read about (for instance, being highly intelligent or spilling coffee over everything) infl uenced their judgments. 
          On the basis of these data, the researchers were able to determine how the woman’s behaviors actually infl uenced the students’ judgments of her. They found, for instance, that being described as having excellent academic credentials increased ratings of intelligence and that spilling coffee on the interviewer’s desk actually increased how much the students liked her.2 But, when the actual effects of the behaviors on the judgments were compared to the students’ reports about how the behaviors infl uenced their judgments, the researchers found that the students were not always correct. Although the students were aware that information about strong academic credentials increased their judgments of intelligence, they had no idea that the applicant’s having spilled coffee made them like her more. 
            Still another way that intuition may lead us astray is that, once we learn about the outcome of a given event (for instance, when we read about the results of a research project), we frequently believe that we would have been able to predict the outcome ahead of time. For instance, if half of a class of students is told that research concerning interpersonal attraction has demonstrated that “opposites attract” and the other half is told that research has demonstrated that “birds of a feather fl ock together,” both sets of students will frequently report believing that they would have predicted this outcome before they read about it. The problem is that reading a description of the research fi nding leads us to think of the many cases that we know that support it, and thus, makes it seem believable. The tendency to think that we could have predicted something that we probably could not have predicted is called the hindsight bias
            In sum, although intuition is useful for getting ideas, and although our intuitions are sometimes correct, they are not infallible. Peoples’ theories about how they make judgments do not always correspond well to how they actually make decisions. And people believe that they would have predicted events that they would not have, making research fi ndings seem like they are just common sense. This does not mean that intuition is not important—scientists frequently rely on their intuition to help them solve problems. But, because they realize that this intuition is frequently unreliable, they always back up their intuition empirically. Behavioral scientists believe that, just as research into the nature of electrons and protons guided the development of the transistor, so behavioral research can help us understand the behavior of people in their everyday lives. And these scientists believe that collecting data will allow them to discover the determinants of behavior and use this knowledge productively.

Relying on Our Intuition

Relying on Our Intuition

          Many people believe that they can fi nd answers to questions about human behavior by using their own intuition. They think that because they spend their  whole lives with others, they should certainly have learned what makes people do what they do and why. As a result, many may believe that behavioral research is basically “common sense” and that, therefore, formal study of it is not necessary. Although there is no question that we do learn about other people by observing them, because our observations are conducted informally, they may lead us to draw unwarranted or incorrect conclusions. In fact, we are often incorrect in our intuition about why others do what they do and even (as Sigmund Freud so insightfully noted) why we ourselves do what we do! 
            The problem with the way people collect and interpret data in their everyday lives is that they are not always particularly thorough. Often, when one explanation for an event seems to make sense, we adopt that explanation as the truth even when other explanations are possible and potentially more accurate. To take a couple of examples, eyewitnesses to violent crimes are often extremely confi dent in their identifi cations of the perpetrators of these crimes. But evidence shows that eyewitnesses are no less confi dent of their identifi cations when they are incorrect than when they are correct (Wells, Leippe, & Ostrom, 1979). People also become convinced of the existence of extrasensory perception, or the predictive value of astrology, when there is no evidence for either. Accepting explanations without testing them thoroughly may lead people to think that they know things that they do not really know. 
           Behavioral scientists have also found that there are a variety of cognitive and motivational biases that frequently bias our perceptions and lead us to draw erroneous conclusions (Fiske & Taylor, 2007; Hsee & Hastie, 2006). As one example, the research by Brendl and his colleagues reported at the end of this chapter shows that people have a preference for the letters in their own name, even though it is unlikely that many people realize that they do. Because these biases occur out of our awareness, it is very diffi cult for us to correct for them.

Everyday Science Versus Empirical Research

Everyday Science Versus Empirical Research

Just like scientists, most of us have an avid interest in asking and answering questions about our world. We want to know why things happen, when and if they are likely to happen again, and how to reproduce or change them. Such knowledge enables us to predict our own behavior and that of others. We even collect data to aid us in this undertaking. Indeed, it has been argued that people are “everyday scientists” who conduct research projects to answer questions about behavior (Nisbett & Ross, 1980). When we perform poorly on an important test, we try to understand what caused our failure to remember or understand the material and what might help us do better the next time. When our good friends Eva and Joshua break up, despite what appeared to have been a relationship made in heaven, we try to determine what happened. When we contemplate the rise of terrorist acts around the world, we try to investigate the causes of this problem by looking at the people themselves, the situation around them, and the responses of others to them.
        The results of these “everyday” research projects can teach us many principles of human behavior. We learn through experience that if we give someone bad news, she or he may blame us even though the news was not our fault. We learn that people may become depressed after they fail at a task. We see that aggressive behavior occurs frequently in our society, and we develop theories to explain why this is so. These insights are part and parcel of everyday social life. In fact, much behavioral research involves the scientifi c study of everyday behavior (Heider, 1958; Kelly, 1967).

Behavioral Research

Behavioral Research

Behavioral research is conducted by scientists in such fi elds as behavioral medicine, communication, criminology, human development, education, psychology, and sociology. The goal of behavioral research is to discover, among other things, how people perceive their world, how they think and feel, how they change over time, how they learn and make decisions, and how they interact with others. Behavioral scientists study behavior both because they want to understand it and also because they want to contribute to creating solutions to the everyday problems that face human beings. Of course, behavioral scientists aren’t the only people who are concerned with human behavior or the only ones who propose solutions to social problems. Philosophers, religious leaders, and politicians, for instance, also attempt to provide explanations for social behavior. But, what sets behavioral scientists apart from many other people who are concerned with human behavior is their belief that, just as dramatic technological advances have occurred through scientifi c research, personal and social behavior can be understood, and potentially improved, through the application of scientifi c research methods. In contrast to many statements made by philosophers, politicians, and religious leaders, which are based only on their own personal beliefs, faith, or intuition, the statements made by social scientists are empirical, which means that they are based on systematic collection and analysis of data, where data are information collected through formal observation or measurement.1 Behavioral scientists draw their conclusions about human behavior from systematic collection and analysis of data. Behavioral scientists believe that research is the best tool for understanding human beings and their relationships with others. For instance, rather than accepting the claim of a religious leader that the adoption of traditional religious beliefs will change behavior, a behavioral scientist would collect data to empirically test whether highly religious people are more helpful and less aggressive toward others than are less religious people. Rather than accepting a politician’s contention that creating (or abandoning) a welfare program will improve the condition of poor people, a behavioral scientist would attempt to empirically assess the effects of receiving welfare on the quality of life of welfare recipients. And, rather than relying on a school principal’s beliefs about which teaching methods are most effective, behavioral scientists would systematically test and compare the effectiveness of different methods. In short, behavioral scientists believe in the value of scientifi c research to answer questions about human behavior. The claim that human behavior is best known through the use of a scientifi c approach is not something that everyone believes or that is without controversy. Indeed, although I hope that you will become convinced of the utility of behavioral research for understanding people, I also hope that you will think critically about its value as you study this book. I hope that you will continually ask yourself what behavioral research methods offer in the way of understanding and improving our lives that other approaches do not. And, most important, I hope that you will learn how to evaluate behavioral research. Finally, although behavioral research is conducted in large part to provide information about important social problems and to further scientifi c understanding about the principles of human behavior, I also hope that you will fi nd it interesting in its own right—you might even discover that conducting research is fun! If you have ever wondered about how we learn and why we forget, what dreams are for and whether they infl uence us when we are awake, whether we can tell if others are lying to us, or even whether some people have extrasensory perception (ESP), you will find that behavioral research is the best way to provide answers to these interesting questions. Studying behavioral research and conducting it yourself is exciting, because it allows you to discover and understand new things. In sum, I hope you will enjoy this book, both because you like behavioral research, and also because you realize that it has a signifi cant impact on human behavior, scientifi c decisions, and public policy.

Introduction to Research

Introduction to Research

         Part of the excitement of contemporary  is observing the speed at which the world around us changes. It was only one hundred years ago that people fi rst fl ew in an airplane. Today, astronauts spend months at a time in space. It was only a little over fi ve hundred years ago that Johannes Gutenberg printed the fi rst page of a book. Today, more printed text is sent via e-mail in a few seconds than could be published in a lifetime only a few years ago. A doctor who studied medicine one hundred years ago learned that most diseases were incurable—medicine could hope only to make the remaining life of a patient more comfortable. Today, doctors routinely give people new life by replacing the coronary arteries of the heart and preventing the growth of tumors through the use of chemical and radiation treatments. 
        Yet, despite the benefi ts that technological change has brought, many of the problems facing humanity appear to be as great as ever. There are still many children, in all parts of the world, who are hungry and who do not have adequate housing or health care. Physical violence is prevalent, including child and spousal abuse, gang violence in cities, ethnic confl icts within nations, and terrorism. Divorce continues to have an impact on the lives of thousands of children, and people continue to expose themselves to deadly viruses such as acquired immune defi ciency syndrome (AIDS), even when there are ways to avoid contracting these diseases. Although people are living longer and enjoy many of the comforts of technological achievement, the dramatic technological advances that have occurred over the past few decades have not generally been paralleled by advances in the quality of our interpersonal and social behavior. 
          It is this behavior, among both humans and animals, and the scientifi c research designed to study it that are the focus of this book. Indeed, the purpose of behavioral research is to increase our understanding of behavior and, where possible, to provide methods for improving the quality of our lives. The results of such research are becoming increasingly relevant to our perception of such human problems as homelessness, illiteracy, psychological disorders, family instability, and violence. Thus, it is not surprising that research is being used more and more frequently to help guide public policy. For instance, behavioral research has been used to guide court rulings on racism, such as in the landmark Brown v. Board of Education (1954), and sexism (Fiske, Bersoff, Borgida, Deaux, & Heilman, 1991), as well as on the use of lie detectors in criminal trials (Saxe, Dougherty, & Cross, 1985). Behavioral research is also being used to help us understand which methods of educating children are most effective, and teachers are being trained to make use of the most effective techniques. The federal government has recently created a center at my university to study the behavorial aspects of terrorism.
         Behavioral research also provides important information that complements other scientifi c approaches. For instance, in the fi eld of medicine, infectious diseases such as measles and polio were once major causes of death. Today, people’s own behavior is implicated in most of the leading killers, including homicide, lung cancer, heart disease, and AIDS. Furthermore, much of the productive capability of modern societies is now dependent not onlyon further technological advances but also on the availability of an educated and skilled work force. 
        In sum, behavioral research is used to study important human problems and provide solutions to them. Because research has such a signifi cant impact on scientifi c decisions and public policy, informed citizens, like you, are wise to understand it.